{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# seekwellpandas: Basic Usage\n",
"\n",
"This notebook demonstrates the basic usage of the seekwellpandas library, which extends pandas with SQL-like functionality.\n",
"\n",
"## Setup\n",
"\n",
"First, let's import the necessary libraries and create some sample data."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city\n",
"0 1 Alice 25 New York\n",
"1 2 Bob 30 London\n",
"2 3 Charlie 35 Paris\n",
"3 4 David 28 Tokyo\n",
"4 5 Eve 22 Sydney\n",
"5 6 Frank 40 Berlin\n",
"6 7 Grace 33 Moscow\n",
"7 8 Henry 45 Rome\n",
"8 9 Ivy 27 Madrid\n",
"9 10 Jack 31 Toronto"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import pandas as pd\n",
"import seekwellpandas\n",
"\n",
"# Create sample data\n",
"people = pd.DataFrame({\n",
" 'id': range(1, 11),\n",
" 'name': ['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry', 'Ivy', 'Jack'],\n",
" 'age': [25, 30, 35, 28, 22, 40, 33, 45, 27, 31],\n",
" 'city': ['New York', 'London', 'Paris', 'Tokyo', 'Sydney', 'Berlin', 'Moscow', 'Rome', 'Madrid', 'Toronto']\n",
"})\n",
"people"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Basic Operations\n",
"\n",
"### Select\n",
"\n",
"The `select` method allows you to choose specific columns from the DataFrame.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" age | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Alice | \n",
" 25 | \n",
"
\n",
" \n",
" 1 | \n",
" Bob | \n",
" 30 | \n",
"
\n",
" \n",
" 2 | \n",
" Charlie | \n",
" 35 | \n",
"
\n",
" \n",
" 3 | \n",
" David | \n",
" 28 | \n",
"
\n",
" \n",
" 4 | \n",
" Eve | \n",
" 22 | \n",
"
\n",
" \n",
" 5 | \n",
" Frank | \n",
" 40 | \n",
"
\n",
" \n",
" 6 | \n",
" Grace | \n",
" 33 | \n",
"
\n",
" \n",
" 7 | \n",
" Henry | \n",
" 45 | \n",
"
\n",
" \n",
" 8 | \n",
" Ivy | \n",
" 27 | \n",
"
\n",
" \n",
" 9 | \n",
" Jack | \n",
" 31 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name age\n",
"0 Alice 25\n",
"1 Bob 30\n",
"2 Charlie 35\n",
"3 David 28\n",
"4 Eve 22\n",
"5 Frank 40\n",
"6 Grace 33\n",
"7 Henry 45\n",
"8 Ivy 27\n",
"9 Jack 31"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"people.select('name', 'age')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Negative selections are also supported."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" name | \n",
" age | \n",
" city | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
"
\n",
" \n",
" 1 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
"
\n",
" \n",
" 2 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
"
\n",
" \n",
" 3 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
"
\n",
" \n",
" 4 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
"
\n",
" \n",
" 5 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
"
\n",
" \n",
" 6 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
"
\n",
" \n",
" 7 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
"
\n",
" \n",
" 8 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
"
\n",
" \n",
" 9 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" name age city\n",
"0 Alice 25 New York\n",
"1 Bob 30 London\n",
"2 Charlie 35 Paris\n",
"3 David 28 Tokyo\n",
"4 Eve 22 Sydney\n",
"5 Frank 40 Berlin\n",
"6 Grace 33 Moscow\n",
"7 Henry 45 Rome\n",
"8 Ivy 27 Madrid\n",
"9 Jack 31 Toronto"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"people.select('-id')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Where\n",
"\n",
"Use `where` to filter rows based on a condition."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
"
\n",
" \n",
" \n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city\n",
"2 3 Charlie 35 Paris\n",
"5 6 Frank 40 Berlin\n",
"6 7 Grace 33 Moscow\n",
"7 8 Henry 45 Rome\n",
"9 10 Jack 31 Toronto"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"people.where_('age > 30')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Group By\n",
"\n",
"Group the data by a specific column."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" age | \n",
"
\n",
" \n",
" city | \n",
" | \n",
"
\n",
" \n",
" \n",
" \n",
" Berlin | \n",
" 40.0 | \n",
"
\n",
" \n",
" London | \n",
" 30.0 | \n",
"
\n",
" \n",
" Madrid | \n",
" 27.0 | \n",
"
\n",
" \n",
" Moscow | \n",
" 33.0 | \n",
"
\n",
" \n",
" New York | \n",
" 25.0 | \n",
"
\n",
" \n",
" Paris | \n",
" 35.0 | \n",
"
\n",
" \n",
" Rome | \n",
" 45.0 | \n",
"
\n",
" \n",
" Sydney | \n",
" 22.0 | \n",
"
\n",
" \n",
" Tokyo | \n",
" 28.0 | \n",
"
\n",
" \n",
" Toronto | \n",
" 31.0 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" age\n",
"city \n",
"Berlin 40.0\n",
"London 30.0\n",
"Madrid 27.0\n",
"Moscow 33.0\n",
"New York 25.0\n",
"Paris 35.0\n",
"Rome 45.0\n",
"Sydney 22.0\n",
"Tokyo 28.0\n",
"Toronto 31.0"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"people.group_by('city').agg({'age': 'mean'})"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Order By\n",
"\n",
"Sort the DataFrame based on one or more columns."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
"
\n",
" \n",
" \n",
" \n",
" 7 | \n",
" 8 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
"
\n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city\n",
"7 8 Henry 45 Rome\n",
"5 6 Frank 40 Berlin\n",
"2 3 Charlie 35 Paris\n",
"6 7 Grace 33 Moscow\n",
"9 10 Jack 31 Toronto\n",
"1 2 Bob 30 London\n",
"3 4 David 28 Tokyo\n",
"8 9 Ivy 27 Madrid\n",
"0 1 Alice 25 New York\n",
"4 5 Eve 22 Sydney"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"people.order_by('age', ascending=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Limit\n",
"\n",
"Limit the number of rows returned."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
"
\n",
" \n",
" \n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
"
\n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city\n",
"4 5 Eve 22 Sydney\n",
"0 1 Alice 25 New York\n",
"8 9 Ivy 27 Madrid\n",
"3 4 David 28 Tokyo\n",
"1 2 Bob 30 London"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"people.order_by('age').limit(5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Advanced Operations\n",
"\n",
"### Join\n",
"\n",
"Demonstrate joining two DataFrames."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
" country | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
" USA | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
" UK | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
" France | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
" Japan | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
" Australia | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city country\n",
"0 1 Alice 25 New York USA\n",
"1 2 Bob 30 London UK\n",
"2 3 Charlie 35 Paris France\n",
"3 4 David 28 Tokyo Japan\n",
"4 5 Eve 22 Sydney Australia"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"countries = pd.DataFrame({\n",
" 'city': ['New York', 'London', 'Paris', 'Tokyo', 'Sydney'],\n",
" 'country': ['USA', 'UK', 'France', 'Japan', 'Australia']\n",
"})\n",
"\n",
"people.join_(countries, on='city')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Union\n",
"\n",
"Combine two DataFrames vertically."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" Karen | \n",
" 29 | \n",
" Chicago | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" Leo | \n",
" 36 | \n",
" Dublin | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" Mike | \n",
" 41 | \n",
" Amsterdam | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" Nina | \n",
" 24 | \n",
" Oslo | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" Oscar | \n",
" 38 | \n",
" Stockholm | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city\n",
"0 1 Alice 25 New York\n",
"1 2 Bob 30 London\n",
"2 3 Charlie 35 Paris\n",
"3 4 David 28 Tokyo\n",
"4 5 Eve 22 Sydney\n",
"5 6 Frank 40 Berlin\n",
"6 7 Grace 33 Moscow\n",
"7 8 Henry 45 Rome\n",
"8 9 Ivy 27 Madrid\n",
"9 10 Jack 31 Toronto\n",
"10 11 Karen 29 Chicago\n",
"11 12 Leo 36 Dublin\n",
"12 13 Mike 41 Amsterdam\n",
"13 14 Nina 24 Oslo\n",
"14 15 Oscar 38 Stockholm"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"other_people = pd.DataFrame({\n",
" 'id': range(11, 16),\n",
" 'name': ['Karen', 'Leo', 'Mike', 'Nina', 'Oscar'],\n",
" 'age': [29, 36, 41, 24, 38],\n",
" 'city': ['Chicago', 'Dublin', 'Amsterdam', 'Oslo', 'Stockholm']\n",
"})\n",
"all_people = people.union(other_people)\n",
"all_people"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### With Column\n",
"\n",
"Add a new column based on an expression."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" city | \n",
" age_group | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
" 20 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
" 30 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
" 30 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
" 20 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
" 20 | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
" 40 | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
" 30 | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
" 40 | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
" 20 | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
" 30 | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" Karen | \n",
" 29 | \n",
" Chicago | \n",
" 20 | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" Leo | \n",
" 36 | \n",
" Dublin | \n",
" 30 | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" Mike | \n",
" 41 | \n",
" Amsterdam | \n",
" 40 | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" Nina | \n",
" 24 | \n",
" Oslo | \n",
" 20 | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" Oscar | \n",
" 38 | \n",
" Stockholm | \n",
" 30 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age city age_group\n",
"0 1 Alice 25 New York 20\n",
"1 2 Bob 30 London 30\n",
"2 3 Charlie 35 Paris 30\n",
"3 4 David 28 Tokyo 20\n",
"4 5 Eve 22 Sydney 20\n",
"5 6 Frank 40 Berlin 40\n",
"6 7 Grace 33 Moscow 30\n",
"7 8 Henry 45 Rome 40\n",
"8 9 Ivy 27 Madrid 20\n",
"9 10 Jack 31 Toronto 30\n",
"10 11 Karen 29 Chicago 20\n",
"11 12 Leo 36 Dublin 30\n",
"12 13 Mike 41 Amsterdam 40\n",
"13 14 Nina 24 Oslo 20\n",
"14 15 Oscar 38 Stockholm 30"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_people.with_column('age_group', 'age // 10 * 10')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Rename Column\n",
"\n",
"Rename an existing column."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" | \n",
" id | \n",
" name | \n",
" age | \n",
" location | \n",
" age_group | \n",
"
\n",
" \n",
" \n",
" \n",
" 0 | \n",
" 1 | \n",
" Alice | \n",
" 25 | \n",
" New York | \n",
" 20 | \n",
"
\n",
" \n",
" 1 | \n",
" 2 | \n",
" Bob | \n",
" 30 | \n",
" London | \n",
" 30 | \n",
"
\n",
" \n",
" 2 | \n",
" 3 | \n",
" Charlie | \n",
" 35 | \n",
" Paris | \n",
" 30 | \n",
"
\n",
" \n",
" 3 | \n",
" 4 | \n",
" David | \n",
" 28 | \n",
" Tokyo | \n",
" 20 | \n",
"
\n",
" \n",
" 4 | \n",
" 5 | \n",
" Eve | \n",
" 22 | \n",
" Sydney | \n",
" 20 | \n",
"
\n",
" \n",
" 5 | \n",
" 6 | \n",
" Frank | \n",
" 40 | \n",
" Berlin | \n",
" 40 | \n",
"
\n",
" \n",
" 6 | \n",
" 7 | \n",
" Grace | \n",
" 33 | \n",
" Moscow | \n",
" 30 | \n",
"
\n",
" \n",
" 7 | \n",
" 8 | \n",
" Henry | \n",
" 45 | \n",
" Rome | \n",
" 40 | \n",
"
\n",
" \n",
" 8 | \n",
" 9 | \n",
" Ivy | \n",
" 27 | \n",
" Madrid | \n",
" 20 | \n",
"
\n",
" \n",
" 9 | \n",
" 10 | \n",
" Jack | \n",
" 31 | \n",
" Toronto | \n",
" 30 | \n",
"
\n",
" \n",
" 10 | \n",
" 11 | \n",
" Karen | \n",
" 29 | \n",
" Chicago | \n",
" 20 | \n",
"
\n",
" \n",
" 11 | \n",
" 12 | \n",
" Leo | \n",
" 36 | \n",
" Dublin | \n",
" 30 | \n",
"
\n",
" \n",
" 12 | \n",
" 13 | \n",
" Mike | \n",
" 41 | \n",
" Amsterdam | \n",
" 40 | \n",
"
\n",
" \n",
" 13 | \n",
" 14 | \n",
" Nina | \n",
" 24 | \n",
" Oslo | \n",
" 20 | \n",
"
\n",
" \n",
" 14 | \n",
" 15 | \n",
" Oscar | \n",
" 38 | \n",
" Stockholm | \n",
" 30 | \n",
"
\n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id name age location age_group\n",
"0 1 Alice 25 New York 20\n",
"1 2 Bob 30 London 30\n",
"2 3 Charlie 35 Paris 30\n",
"3 4 David 28 Tokyo 20\n",
"4 5 Eve 22 Sydney 20\n",
"5 6 Frank 40 Berlin 40\n",
"6 7 Grace 33 Moscow 30\n",
"7 8 Henry 45 Rome 40\n",
"8 9 Ivy 27 Madrid 20\n",
"9 10 Jack 31 Toronto 30\n",
"10 11 Karen 29 Chicago 20\n",
"11 12 Leo 36 Dublin 30\n",
"12 13 Mike 41 Amsterdam 40\n",
"13 14 Nina 24 Oslo 20\n",
"14 15 Oscar 38 Stockholm 30"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"all_people.rename_column('city', 'location')"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (seekwellpandas)",
"language": "python",
"name": "seekwellpandas"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.6"
}
},
"nbformat": 4,
"nbformat_minor": 2
}